- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Magozzi, Sarah (2)
-
Bataille, Clement P. (1)
-
Bowen, Gabriel J. (1)
-
Brown, Julie C. S. (1)
-
Bury, Sarah J. (1)
-
Contina, Andrea (1)
-
Dunbar, Robert B. (1)
-
Espinasse, Boris (1)
-
Graham, Laura (1)
-
Gutiérrez‐Rodríguez, Andres (1)
-
Hobson, Keith A. (1)
-
Howa, John D. (1)
-
Hunt, Brian P. V. (1)
-
Mucciarone, David A. (1)
-
Nodder, Scott D. (1)
-
Pakhomov, Evgeny A. (1)
-
Pinkerton, Matt (1)
-
Safi, Karl (1)
-
Somes, Chris (1)
-
Soto, ed., David (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Stable hydrogen and oxygen isotopic compositions (δ2H and δ18O, respectively) of animal tissues have been used to infer geographical origin or mobility based on the premise that the isotopic composition of tissue is systematically related to that of local water sources. Isotopic data for known‐origin samples are required to quantify these tissue–environment relationships. Although many of such data have been published and could be reused by researchers, differences in the standards used for calibration and analytical procedures for different datasets limit the comparability of these data.We develop an algorithm that uses results from comparative analysis of secondary standards to transform data among reference scales and estimate the uncertainty inherent in these transformations. We apply the algorithm to a compilation of known‐origin keratin data published over the past ~20 years.We show that transformation improves the comparability of data from different laboratories, and that the transformed data suggest ecophysiologically meaningful differences in keratin–water relationships among different animal groups and taxa.The compiled data and algorithms are freely available in the ASSIGNRr‐package to support geographical provenance research, and more generally offer a methodology overcoming several challenges in geochemical data integration and reuse.more » « less
-
St John Glew, Katie; Espinasse, Boris; Hunt, Brian P. V.; Pakhomov, Evgeny A.; Bury, Sarah J.; Pinkerton, Matt; Nodder, Scott D.; Gutiérrez‐Rodríguez, Andres; Safi, Karl; Brown, Julie C. S.; et al (, Global Biogeochemical Cycles)Abstract Polar marine ecosystems are particularly vulnerable to the effects of climate change. Warming temperatures, freshening seawater, and disruption to sea‐ice formation potentially all have cascading effects on food webs. New approaches are needed to better understand spatiotemporal interactions among biogeochemical processes at the base of Southern Ocean food webs. In marine systems, isoscapes (models of the spatial variation in the stable isotopic composition) of carbon and nitrogen have proven useful in identifying spatial variation in a range of biogeochemical processes, such as nutrient utilization by phytoplankton. Isoscapes provide a baseline for interpreting stable isotope compositions of higher trophic level animals in movement, migration, and diet research. Here, we produce carbon and nitrogen isoscapes across the entire Southern Ocean (>40°S) using surface particulate organic matter isotope data, collected over the past 50 years. We use Integrated Nested Laplace Approximation‐based approaches to predict mean annual isoscapes and four seasonal isoscapes using a suite of environmental data as predictor variables. Clear spatial gradients in δ13C and δ15N values were predicted across the Southern Ocean, consistent with previous statistical and mechanistic views of isotopic variability in this region. We identify strong seasonal variability in both carbon and nitrogen isoscapes, with key implications for the use of static or annual average isoscape baselines in animal studies attempting to document seasonal migratory or foraging behaviors.more » « less
An official website of the United States government
